The University of Texas at Austin
Electrical and Computer
Engineering
Cockerell School of Engineering

Spring 2024

INTRODUCTION TO
COMPUTER VISION

Atlas Wang
Associate Professor, The University of Texas at Austin

Visual Informatics Group@UT Austin
https://vita-group.github.io/

(©) 72 Q[N ()

A Triumph of Deep Learning: 2012 - present

Top-performers in many tasks, over many domains

Speech Recognition

THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

30
. = — Spect
At last — a computer program that ERRies] N L P
205 can beat a champion Go player PAGE484
Parsing Natural Language Sentences
ALLSYSTEMSGO g#s
15 = VP A small crowd
/ VP 2 NP quietly enters
R TEEEEaE sEEReEy the historic
7. CONSERVATION RESEARCH ETHICS POPULAR SCIENCE NATURE, C”"'j f‘"““l L "
° SONGBIRDS SAFEGUARD WHEN GENES v quietly NP church
RENCY 04> s R
“ ||| ”m | enters Det, Adl. : N. Semantic
5 1770028083095 S v b i Representations
2010 2011 2012 2013 2014 ® O l ® Indices
the historic/ |church| Words

Image classification, detection, localization...

Feature learning: Going Deep

Classical

Feature Learning Classifier

Train with BIG input &
output, from end to end

Low-level Mid-level High-level

lassifier
Features Features Features Classifie

More abstract feature representation >

Deep learning

e Learn a feature hierarchy all the way from raw inputs (e.g. pixels) to classifier
* Each layer extracts features from the output of previous layer

* Train all layers jointly

) hidden layer 1 hidden layer 2 hidden layer 3
input layer

output layer

Status Quo

AlexNet, 8 layers % VGG, 19 layers ResNet, 152 layers
(ILSVRC 2012) (ILSVRC 2014) (ILSVRC 2015)
Current Trend:

B To build increasingly larger, deeper networks,
trained with more massive data, based on the
benefits of high-performance computing.

B Play with the connectivity and add “skips”

Grand Challenges

Black Box
Neural Network

Input 1 _’—
= Why/how deep learning works? Output 1
Input ... —p
e In theory, many cases shouldn’t even work... - output o

e Gap between engineering (or art) and science: Inputn —=
Rule extraction ™,
i algorithms |

Lack of theoretical understandings &

guarantees, and analytical tools | | Trestian Deceson Tree

e Training is computationally expensive and ‘ |—. [- | ‘]

difficult, relying on many “magics”

e Lack of principled way to incorporate domain
expertise, or to interpret the model behaviors ‘—/\-— | N | ‘ <

AND OR NOT
min(AB) maeA 3) [1-A)
Extract Logic in either symbolic or fuzzy form Extract Decision Trees contraining Loqic

Perceptron

Input
Weights
X1
W,
X5 W
2
— Output: sgn(w-x + b)
X3 >
W3 _
W Can incorporate bias as
Xp ° component of the weight

vector by always including a
feature with value setto 1

Loose Inspiration: Human neurons

Axonal arborization
& \

\ Axon from another cell

Synapse
Dendrite

\/

Synapses

Cell body or Soma

Perceptron training algorithm

* Initialize weights
 Cycle through training examples in multiple passes (epochs)

* For each training example:
* Classify with current weights: y' = sgn(w : X)
* If classified incorrectly, update weights:

W w+a(y-y')x

* ais a learning rate that should decay as a function of epoch t, e.g.,
1000/(1000+t)

Linear separability

xl‘ xl‘

1O ® |l @ ®
00O O— 00O @o—
0 1 X2 0 1 X2

X, and x, X| Or X,

X1y
l @ O
?
0O o
0 1 x
X| XOr X,

How do we make nonlinear classifiers out of
perceptrons?

* Build a multi-layer neural network!

iInput layer

hidden layer 1 hidden layer 2

Network with a single hidden layer

* Hidden layer size and network capacity:

3 hidden neurons 6 hidden neurons 20 hidden neurons

Source: http://cs231n.github.io/neural-networks-1/

http://cs231n.github.io/neural-networks-1/

Training of multi-layer networks

* Find network weights to minimize the error between true and
estimated labels of training examples:

E(W) = 2 - fo(x)

oE
* Update weights by gradient descent: W W—o %

Forward-Backward Propagation

——(W'x)

Backward propagation:

OW3 — 00 OW3

1 2
B owen s s owene) 2
h(x) = ¢(Wx) _
00 oL
OW3 00
— — <—
Y >
JL oL 00 _
— (Chain Rule)

Backpropagation: a simple example
f(z,y,2) = (z + y)z
eg.x=-2,y=5,z=4

f

-12

Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.x=-2,y=95,z=4

f

12

. 9f oF oF
Want: 9’ By’ 02

Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.x=-2,y=95,z=4

12

. 9f oF oF
Want: 9’ By’ 02

Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.x=-2,y=95,z=4

12

. 9f oF oF
Want: 9’ By’ 02

of
0z

Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.x=-2,y=95,z=4

. 9f oF oF
Want: 9’ By’ 02

f -12
1
z -4
3 -—
of
0z

Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.x=-2,y=95,z=4

F=12

. 9f oF oF
Want: 9’ By’ 02

Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.x=-2,y=95,z=4

. 9f oF oF
Want: 9’ By’ 02

Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.x=-2,y=95,z=4

. 9f oF oF
Want: 9’ By’ 02

Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.x=-2,y=95,z=4

. 9f oF oF
Want: 9’ By’ 02

Chain rule:
ﬁ: Of oq
Oy 0q Oy

Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.x=-2,y=95,z=4

. 9f oF oF
Want: 9’ By’ 02

Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.x=-2,y=95,z=4

. 9f oF oF
Want: 9’ By’ 02

Chain rule:
of _ 0f 9q
Or 0q Ox

Training of multi-layer nonlinear networks

* Gradient descent requires neural networks to be equipped with a
(nearly) differentiable nonlinearity function, called neuron

Sigmoid: g(¥) = Rectified linear unit (ReLU): g(¢) = max(0,f)

l+e™’

“local gradient”

“local gradient”

Z

oL
0z

gradients

“local gradient”

X o

O~ Lo

e’@ Z
oL
0z

gradients

“local gradient”

PR
o ;
OL
0z
Y
a/ "
gradients

Auto-Encoder

* Unsupervised feature extraction
e Reconstruct the input from itself via using “bottleneck”

input output

v ~S. i code | 7Ty

decoder
encoder

Denoising Auto-Encoder

e Reconstruct the input from a slightly corrupted “noisy” version
* Purpose: learning robust features for better generalization

input output

v ~S. i code | 7Ty

x| Y ViR v x X =X + noise

decoder
encoder

From NNs to Convolution NNs

The most important building block in modern deep learning

From fully connected to convolutional networks

image

From fully connected to convolutional networks

feature map

-/

\ A T

single set of
weights

image

From fully connected to convolutional networks

feature map

/

single set of
weights
_\
\
\\ .
— \\\\

image Convolutional layer

Convolution as feature extraction

Feature Map

-

Key operations in a CNN

[Feature maps }

-

{ Spatial pooling }

[Non-linearity 1

Feature Map

Source: R. Fergus, Y. LeCun

TEXAS ELECTRICAL AND COMPUTER ENGINEERING

Review: Computer Vision
Has “Three Levels”

“There'’'s an “There’s an

edge!” object and a
background!”

“There’s a chair

Deep Features (May) Learn Semantic Hierarchy

Elephants Chairs

Popular Backbones: From LeNet

to DenseNet

A Remarkable Odyssey to Artificial Intelligence by
Human Intelligence

LeNet-5

C3:f. maps 16@10x10
C1:feature maps S4:f. maps 16@5x5

INPUT 6@28x28
32x32 S2: f. maps

it = B

I | Fullconrlection | Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

CS:layer rg: jayer OUTPUT
120 84 Y 10

* Average pooling

* Sigmoid or tanh nonlinearity

* Fully connected layers at the end

 Trained on MNIST digit dataset with 60K training examples

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition,
Proc. IEEE 86(11): 2278-2324, 1998.

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

AlexNet, 2012

5 Convolutional Layers 1000 ways
Softmax

AL
- g '
- 5 2538 J0ag \dense
13 \ 13
tE T hs dense | |dense
1000
192 128 Max -
Max 128 Max pooling 204t 3048 o«
pooling pooling t

3 Fully-Connected
Layers
* The FIRST winner deep model in computer vision, and one of the most classical choices for
domain experts to adapt for their applications
* 5 convolutional layers + 3 fully-connected layers + softmax classifier
 Three Key Design Features: ReLU, dropout, data augmentation

LeNet

AlexNet

Image: 28 (height) x 28 (width) x 1 (channel)

Image: 224 (height) x 224 (width) x 3 (channels)

Convolution with 5x5 kernel+2padding:28x28x6

Convolution with11x11 kernel+4 stride:54x54 x96

sigmoid

Relu

Pool with 2x2 average kernel+2 stride:14x14x6

Pool with 3x3 max. kernel+2 stride: 26x26x96

Convolution with 5x5 kernel (no pad):10x10x16

Convolution with 5x5 kernel+2 pad:26x26x256

sigmoid Relu
Pool with 2x2 average kernel+2 stride: 5x5x16 Pool with 3x3 max.kernel+2stride: 12x12x256
v flatten v
Dense: 120 fully connected neurons Convolution with 3x3 kernel+1 pad:12x12x384
sigmoid Relu
Dense: 84 fully connected neurons Convolution with 3x3 kernel+1 pad:12x12x384
sigmoid RelLu
Dense: 10 fully connected neurons Convolution with 3x3 kernel+1 pad:12x12x256
v Relu
Output: 1 of 10 classes Pool with 3x3 max.kernel+2stride:5x5x256
flatten
Dense: 4096 fully connected neurons
Relu, dropout p=0.5
Dense: 4096 fully connected neurons
Relu, dropout p=0.5

Dense: 1000 fully connected neurons

|
A
Output: 1 of 1000 classes

Recap: “Chain Rule”

Forwardpass Backwardpass
x dL B dLdz
& dzdx
f(x; y) > Z df <
dl. dLdz
Y o Ty

dL
dz

From Sigmoid to RelLU

sigmoid function

I

1] T

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6 |-

0.4

0.2

0.0

derivative of sigmoid

derivative is zero at tails

derivative of RelLU

] 1 1 1

derivative exagtly zero here

-10 -5 0 5

10

Output of neuron

Rectified linear a;tivation function

1.2r

0.2

-10 ~05 0.0
Input to neuron

0.5

1.0

Dropout

 Randomly select weights to update

* |n each update step, randomly
sample a different binary mask to all
the input and hidden units

* Multiple the mask bits with the units
and do the update as usual

* Typical dropout probability: 0.2 for
input and 0.5 for hidden units

* Very useful for FC layers, less for conv
layers, not useful in RNNs

o
o¥o
oloN

3?%$
HN
@@

®

Data Augmentation

Horizontal Flip

L 74
- EEEE

* Adding noise to the input: a special kind of augmentation

* Be careful about the transformation applied -> label preserving
* Example: classifying ‘b’ and ‘d’; ‘6" and ‘9’

VGG-Net, 2014

ConvNet Configuration

A A-LRN B C D E
11 weight 11 weight 13 weight 16 weight 16 weight 19 weight
layers layers layers layers layers layers
mput (224 x 224 RGB image)
conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
LRN conv3-64 conv3-64 conv3-64 conv3-64

maxpool
conv3-128 | conv3-128 | conv3-128 | conv3-128 || conv3-128 | conv3-128
conv3-128 | conv3-128 || conv3-128 | conv3-128

maxpool
conv3-256 | conv3-256 | conv3-256 | conv3-256 || conv3-256 | conv3-256
conv3-256 | conv3-256 | conv3-256 | conv3-256 || conv3-256 | conv3-256
convl-256 || conv3-256 | conv3-256
conv3-256

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 || conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 || conv3-512 | conv3-512
convl-512 || conv3-512 | conv3-512
conv3-512

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 || conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 || conv3-512 | conv3-512
convl-512 || conv3-512 | conv3-512
conv3-512

maxpool

FC-4096

FC-4096

FC-1000

soft-max

Key Technical Features:
* Increase depth (up to 19)
* Smaller filter size (3)

Configurations D and E are
widely used for various tasks,
called VGG-16 and VGG-19

Deep Residual Network (ResNet), 2015

-

—
L
L
c
1<)
S
C - [0001 %] [0001 %) | [9601 9}]
22 3 = e
— 100d Sae I 9608) :
T D A : ndino
5 D s MO EXE | [osmmoee |
o ®© A A
n m s EE | [[asmoee |
o= 4
] 7
G as‘woEE | [asweoee |
] 4 A
Q. as‘woeE | [asmweose |
o @ T A
] P [oismeoee | [asmmee |
O A . .
< e [_2lTrs MeoopE | [z wooexe | 2/00d gl
i A A
] [eszmmoexe |
7y
| [esttmooexe |
4
] [srmmes |
A
] [oszmmee |
7 3
] [osz'mmoexe |
A
| [eszmmoexe |
4
] [wsrmmee |
7y
] [szmwee | [zrsmwoope |
4 A
] [eszmmee | [oismoee |
4 4
] [srmmee | [zis'wope |
4 4
] [eszmmoexe | [zismwoopg |
= A fo—
] [eres'moexe | 2/°pod i
A
| [smmeoee |
A
] [smrmocope |
A
STTMOOEXE | [smrmooee |
4 4
BTT MO EXE | [smrmoope | [osmweoee |
A A
[szrmwooee | [smmmmps | [osmweoee |
A 4 A
BT EXE | [smamoee | [aswoee |
-l | s e
; 821 ‘MI00 EXE BCT MID EXE TT5 Mo B ;
A A LY A mwﬁ”ﬂ
.. | ¥mimooexe | [wrsmrmooexe | 2/ wod
A
[roweoee |
7y
.a. [vwwwee |
[e)) A 1
c _ +9 ‘MI0D EXE _ _ 957 ‘MIOO DX _
c 4 A
= =X [vowoee | [emoopg |
© Q A A
b b [#9 “MUOO EXE] [esrmmee |
— Q 4 A
8 o o R <
== A 4 wndino
—_— T T/ wod z/‘pod
83 [owmen] —[Cawes]
= T/ ¥ ‘Moo £xg BTT ‘MI0O P
X o
indyno
2/‘pod
>
A
= []
=
e 7 vz s
2 T o
sSoun SSeun aSeun
|enpisal sakel-pg uie|d Jake|-pg 6T-99A

weight layer
weight layer

19Nabew Joj sainjosyyole
yiompau ajdwexg

skip connections for residual mapping, up to > 1000 layers

Key Technical Features

Densely Connected Convolutional Networks

(DenseNet), 2017
Prediction
Dense Block 2 ol |, Dense Block 3 -
) @ v® v® yo [»>51>(S . ~® vo vo yo | »|Sin(3 “horse”

Input

Dense Block 1
U "0 v vO v@

Buijood

SN

Key Technical Features:

* Finer combination of
multi-scale features
(or whatever...)

18.00%
16.00%
14.00%
12.00%
10.00%
8.00%
6.00%
4.00%
2.00%
0.00%

Top-S error rate

1

1

1

N
N/ éz
90 4 yéz yéz @yéz Q.@é $
s & ¢

\ 4"' é" 4"

Attention Mechanism

A___]

[bird |
flying
over

14x14 Feature Map

D

a

body
of
water

1.Input 2. Convolutional 3. RNN with attention 4. Word by
Image Feature Extraction over the image word

generation)

“Show, Attend and Tell: Neural Image Caption Generation
with Visual Attention”, 2015

Idea is simple: add a (learned)
weighted mask to feature (feature
selection)

Use a feed-forward deep network
to extract L feature vectors

Can use a recurrent network to
iteratively update the attention
(shown as bright regions) for each
output word

Find meaningful correspondences
between words and attentions

Examples of (Input) Visual Attention

A WomaTi s throwmg a frisbee in a park. A dog is standmg on a hardwood floor. A stop sign is on a road with a
mountain in the background.

A ||tt|e girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with
a teddy bear, in the water. trees in the background.

Fully Convolutional Network (FCN), 2014

. AN %
,\0' c:\

forward /inference

backward/learning

| 9 A
b«ng &096 21

/3%& 3%& 'f)b

Key Technical Features:
* No fully-connected layer -> No fixed requirement on input size

 Widely adopted in pixel-to-pixel prediction tasks, e.g., image segmentation

U-Net, 2015

 The architecture consists of a

Network Architecture contracting path to capture
- context
] Contractingpath| Expansive path 128 64 64 2 . .

d= * ..and a symmetric expanding
mage e olofof 2% ion ath to enable precise
tia 2 A & 2 map
14 d s localization.
* Also fully convolutional
H'E * VVery popular backbone for
G ~omsanu dense preo!iction (image
i _,%,@_é ‘ 5 segmentation, restoration...)
Z -,:(' 3 4 up-conv 2x2

= CcONv 1x1

R-CNN: Region Proposals + CNN

warped region

! =
.y - :
= =P> person? yes.
I

CNNiN

]

————————————————————

5 aeroplane? no.

|
4| tvmonitor? no.

localization

feature extraction

classification

this paper:

selective search

deep learning
CNN

binary linear SVM

alternatives:

objectness, constrained
parametric min-cuts,
sliding window ...

HOG, SIFT, LBP,
BoW, DPM ...

SVM,
Neural networks,
Logistic regression ...

Share convolution layers for proposals from the same image

Fast RCNN

ROI Pooling

Conv

|=projection_

Rol
pooling

N

feature ma

layer

Faster and More accurate than RCNN

Outputs: bbox
softmax EETEeSS0F

il
FCs v

0

Rol feature
vector

For each Rol

Fast RCNN

Bounding hox regression

Fully connected layer

| Convolution

and Pooling

Overfeat, VG

\

> Softmax loss

VN

Total loss
DeepPose, R-CNN
4 value
. ~ L2 loss (X,y,w,h)
OR

L1 loss

Don’t need to have external regional proposals

Faster RCNN

RPN - Regional Proposal Network

classifier

‘ pooling 2k scores 4k coordinates <mm Fanchor boxes
2 o cls layer \ ’ reg layer _
— OV v

256-d

intermediate layer

Region Proposal Network g

T 77— conv feature map

Yolo: You Only Look Once

The following predictions are made for each cell inan S x S grid.
C conditional class probabilities Pr(Class, | Obj)
B bounding boxes (4 parameters each)

B confidence scores Pr(Obj)*loU

Outputis S xS x (5B+C) tensor

Yolo: You Only Look Once

Consider detection a regression problem
448 Use a single ConvNet

Runs once on entire image. Very Fast!

7
7
12
p |
56
3 36
448 3 283
I e | e PO 2
12 56 3 3
28 14
7 Z 7

3 192 256 512 1024 1024 1024 4096 30
Conv. Layer Conv. Layer Conv. Layers Conv. Layers Conv. Layers Conv. Layers Conn. Layer Conn. Layer
7x7x64-s-2 3x3x192 1x1x128 1x1x2561, 4 1x1x512 1., 3x3x1024
Maxpool Layer ~ Maxpool Layer 3x3x256 3x3x512 3x3x1024 3x3x1024
2x2-s-2 2x2-s-2 1x1x256 1x1x512 3x3x1024
3x3x512 3x3x1024 3x3x1024-s-2

Maxpool Layer Maxpool Layer
2x2-5-2 2x2-s-2

3D Convolutional Network (3D CNN), 2011

Key Technical Features:
* Going from 2D convolutional filters to 3D filters, to take temporal coherence into consideration

More Efficient Design? 7
(‘ /(:(,,)_‘ ;a/rletaflobe

/Front\al lobe) /’))/
“Two-streams hypothesis” for human T *Occipital
_),/ lobey
vision Tempora\ll \Iob\S

and recognizing where objects are in space. It contains a

detailed map of the visual field. and detects & analyzes
location movements

* The ventral stream is associated with object recognition
and form representation. Also described as the “what”
stream, it has strong connections to the dorsal stream
and other brain regions controlling memory or emotion

* Long story short: human brains use two

* The dorsal stream involves in the guidance of actions __ /) ..,,,,///////

relatively independent systems to recognize ' 4.
objects and to record temporal movements. hat

=

Two Stream Network, 2014

input
video

" Spatial stream ConvNet

S
Z
_

conv1 || conv2 || conv3 || conv4 || conv5 fullé full7 ||softmax
7X7x96 || 5x5x256 || 3x3x512 || 3x3x512 || 3x3x512 4096 2048
stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout

norm. norm. p00| 2%x2
single frame [P0l 2x2 || pool 2x2
=
- Temporal stream ConvNet

‘ conv1 || conv2 || conv3 || conv4 || convS fullé full7 ||softmax
7X7x96 || 5x5x256 || 3x3x512 || 3x3x512 || 3x3x512 || 4096 2048
stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout

. norm. || pool 2x2 pool 2x2
multi-frame pool 2x2

. optical flow

Figure 1: Two-stream architecture for video classification.

Slow-Fast Network, 2019

A state-of-the-art two-stream model with
* (i) a Slow pathway, operating at low frame rate, to capture spatial semantics

* (ii) a Fast pathway, operating at high frame rate, to capture motion at fine
temporal resolution.

==

Low frame rate HW

7
- ﬁ_ﬁ_

pC

Yy

uonorpaid

High frame rate BC

Optimization Algorithms

Where the magic happens

Gradient Descent (GD)

Algorithm 1 Batch Gradient Descent at lteration £

Require: Learning rate €
Require: Initial Parameter 6
1: while stopping criteria not met do
2: Compute gradient estimate over N examples:
3 g +xVed, L(f(x1;0),y®)
4: Apply Update: 6 < 0 — eg
5. end while

@ Positive: Gradient estimates are stable

@ Negative: Need to compute gradients over the entire training
for one update

Stochastic Gradient Descent (SGD)

Algorithm 2 Stochastic Gradient Descent at Iteration k

Require: Learning rate €
Require: Initial Parameter 6
1: while stopping criteria not met do
2: Sample example (x(9), y(1)) from training set
3 Compute gradient estimate:
4 g+ +VeL(f(x®;0),y")
5: Apply Update: 6 < 0 — eg
6: end while

@ ¢ is learning rate at step k
e Sufficient condition to guarantee convergence:

0.0

Zek:ooand iei<oo

GD versus SGD

@ Batch Gradient Descent:
1 . .
5 el E (7). (1)
g%—l_Nv@ i L(f(Xzae)ayZ)
0« 60—ecg

e SGD:

&+ +VoL(f(x?;0),y?)
0+ 0—cg

Minibatch

e Potential Problem: Gradient estimates can be very noisy
* Obvious Solution: Use larger mini-batches (In theory, growingly larger)

* Advantage: Computation time per update does not depend on number of
training examples.

* This allows convergence on extremely large datasets

* The larger MB size the better (only if you can)!!

“Large Scale Learning with Stochastic Gradient Descent”, Leon Bottou.

Momentum

* The Momentum method is a method
to accelerate learning using SGD

1:000:

* In particular SGD suffers in the
following scenarios:
* Error surface has high curvature ol
* Small but consistent gradients
* Noisy gradients

500 |

@ Gradient Descent would move quickly down the walls, but
very slowly through the valley floor

Momentum
o Update rule in SGD: {

O @ _ng

C(0)

where gl) = VoC(OW)
o Gets stuck in local minima
or saddle points

» O

— Py e

o Momentum: make the same movement y"
in the last iteration, corrected by negative
gradient:

pUFD v —(1—2)g!

®(H—1) (_ ®(t) 4+ nv(H—l) Negative Gredient

o v\ is a moving average of —g()

Adaptive Learning Rate Optimization

e Popular Solver Examples: AdGrad, RMSProp, Adam

SGD: 0 + 0 — eg
Momentum: v < av —eg then § < 0 + v

Nesterov: v <— av — eVy (L(f(x(i); 0+ av), ym)) then 0 <~ 0 4 v

AdaGrad: r<r+g® g then Af— «+ ® g then 8 < 6 + A6

€
6+ /1
RMSProp: 1 ¢ pr4 (1 — p)g ©® & then A < —— _ @ g then 6 « 0 + Af
6+ /1T

then 0 «— 6 + A0

Adam: S «

Batch Normalization

* In ML, we assume future data will
be drawn from same probability
distribution as training data

* For a hidden layer, after training,
the earlier layers have new
weights and hence may generate
a new distribution for the next
hidden layer

 \WWe want to reduce this internal
covariate shift for the benefit of
later layers

Input: Values of z over a mini-batch: B = {z1._ . };
Parameters to be learned: v,
Output: {y; = BN, s(z;)}

1 m
KB < E;%

1 m
o ooy Z(ﬂfi —)’
1=1

Ly — UB
\/0'123 + €

Y < YT, + B = BN%B(xi)

// mini-batch mean

// mini-batch variance

// normalize

/fi%

// scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.

Many Normalization Schemes...

Batch Norm Layer Norm Instance Norm Group Norm

H,W
YT

[S S S S S
oW @

H, W
H, W

[S S S LS
H,W

A
A

Y

oW @

NAVAVAVAVAN
NAVAVAVAVA

NAVAVAVAVA
NAVAVAVAWA
NAVAVAVAWAY

NAVAVAVAVA

A

NAVAVAVAVAN
Z N\ A\ N\ N\
L/
Z A\ A\ N\ N\ N\
NAVANAVAVAN
Z A\ A\ A\ N\ N\

Comparing Popular Normalization methods. Each subplot shows a feature map tensor, with N as the batch axis, C
as the channel axis, and (H, W) as the spatial axes. The pixels in blue are normalized by the same mean and
variance, computed by aggregating the values of these pixels.

Weight Initialization

* All Zero Initialization: Terribly Wrong!

e |f every neuron in the network computes the same output, then they will also all compute the same gradients
during back-propagation and undergo the exact same parameter updates.

* Need “break the symmetry”

* Small Random Initialization is the standard practice
e Current recommendation for initializing CNNs with RELU: Why?
w = np.random.randn(n) * sqrt(2.0/n)

a._ .,

* “randn”: Gaussian; “n”: the number of inputs for current layer.

* For general NNs, layer-wise pre-training is safe.

* Even safer: start from a pre-trained model

Choice of Activation Functions

1.0

08

10}

1.0} [
[gl
05F 3
6k

| M//_ | | ﬁj . — . o
-10 -5 5 10 =10 -5 5 10 -4 -
Sigmoid Tanh
Softplus ELU

t t

: : Yi = Ty

I I

I I

[|

yi=0 + oz = v x

[| |

| | I

I Yi = a;T; | S I

; : Yoi = QjiTji |

I | I

ReLU Leaky ReLU/PReLU Randomized Leaky ReLU

o
@
o

o
~
w

o
~
=

o
o
o

A big gap = overfitting

=2 increase regularization strength

Clasification accuracy
o
3
N

Monitor Your
Training Curve

o
w
-

o
o
o

‘ylllr 7 .‘I f""v,v‘l\‘ " VAVAC R AT 4 BAVA o — D, e ” O no gap
=> increase model capacity

o
Y
w

Trameng accuracy
— Vahdaton accuracy

o
re
=

X « L LY 00

Figure 3

If this looks too linear: learning rate isllow.
If it doesn’t decrease much: learning rate might be too high

low learning rate

high learning rate

\ the “width” of the curve is related

to the batch size. This|one looks too wide (noisy)
- => might want to increase batch size
epoch - ™

Figure 1 Figure 2

good learning rate

£y LY p

&

The University of Texas at Austin
Electrical and Computer
Engineering

Cockrell School of Engineering

